the Week of Proper 28 / Ordinary 33
Click here to join the effort!
Bible Encyclopedias
Grasses
1911 Encyclopedia Britannica
a group of plants possessing certain characters in common and constituting a family (Gramineae) of the class Monocotyledons. It is one of the largest and most widespread and, from an economic point of view, the most important family of flowering plants. No plant is correctly termed a grass which is not a member of this family, but the word is in common language also used, generally in combination, for many plants of widely different affinities which possess some resemblance (often slight) in foliage to true grasses; e.g. knot-grass (Polygonum aviculare), cotton-grass (Eriophorum), rib-grass (Plantago), scorpion-grass (Myosotis), blue-eyed grass (Sisyrinchium), seagrass (Zostera). The grass-tree of Australia (Xanthorrhoea) is a remarkable plant, allied to the rushes in the form of its flower, but with a tall, unbranched, soft-woody, palm-like trunk bearing a crown of long, narrow, grass-like leaves and stalked heads of small, densely-crowded flowers. In agriculture the word has an extended signification to include the various fodder-plants, chiefly leguminous, often called " artificial grasses." Indeed, formerly grass (also spelt gwrs, gres, gyrs in the old herbals) meant any green herbaceous plant of small size.
Yet the first attempts at a classification of plants recognized and separated a group of Gramina, and this, though bounded by nothing more definite than habit and general appearance, contained the Gramineae of modern botanists. The older group, however, even with such systematists as Ray (1703), Scheuchzer (1719), and Micheli (1729), embraced in addition the Cyperaceae 1 The word " grass " (0. Eng. goers, grees) is common to Teutonic languages, cf. Dutch Ger. Goth. gras, Dan. grees; the root is the O. Teut. gra-, gro-, to increase, whence " grow," and " green," the typical colour of growing vegetation. The Indo-European root is seen in Lat. gramen. The O. Eng. grasian, formed from grees, gives " to graze," of cattle feeding on growing herbage, also " grazier," one who grazes or feeds cattle for the market; " to graze," to abrade, to touch lightly in passing, may be a development of this from the idea of close cropping; if it is to be distinguished a possible connexion may be found with " glace " (Fr. glacer, glide, slip, Lat. glacier, ice), to glance off, the change in form being influenced by grate," to scrape, scratch (Fr. gratter, Ger. kratzen). (Sedge family), Juncaceae (Rush family), and some other monocotyledons with inconspicuous flowers. Singularly enough, the sexual system of Linnaeus (1735) served to mark off more distinctly the true grasses from these allies, since very nearly all of the former then known fell under his Triandria Digynia, whilst the latter found themselves under his other classes and orders.
I. Structure. - The general type of true grasses is familiar in the cultivated cereals of temperate climates - wheat, barley, rye, oats, and in the smaller plants which make up pastures and meadows and form a principal factor of the turf of natural downs. Less familiar are the grains of warmer climates - rice, maize, millet and sorgho, or the sugar-cane. Still farther removed are the bamboos of the tropics, the columnar stems of which reach to the height of forest trees. All are, however, formed on a common plan.
Root
Most cereals and many other grasses are annual, and possess a tuft of very numerous slender root-fibres, much branched and of great length. The majority of the members of the family are of longer duration, and have the roots also fibrous, but fewer, thicker and less branched. In such cases they are very generally given off from just above each node (often in a circle) of the lower part of the stem or rhizome, perforating the leaf-sheaths. In some bamboos they are very numerous from the lower nodes of the erect culms, and pass downwards to the soil, whilst those from the upper nodes shrivel up and form circles of spiny fibres.
Stem
The underground stem or rootstock (rhizome) of perennial grasses is usually well developed, and often forms very FIG. I. - Rhizome of Bamboo. A, B, C, D, successive series of axes, the last bearing aerial culms. Much reduced.
long creeping or subterranean rhizomes, with elongated internodes and sheathing scales; the widely-creeping, slender rhizomes in Marram-grass (Psamma), Agropyrum junceum, Ely7nus arenarius, and other sand-loving plants render them useful as sand-binders. It is also frequently short, with the nodes crowded. The turf-formation, which is characteristic of open situations in cool temperate climates, results from an extensive production of short stolons, the branches and the fibrous roots developed from their nodes forming the dense " sod." The very large rhizome of the bamboos (fig. r) is also a striking example of " definite " growth; it is much branched, the short, thick, curved branches being given off below the apex of the older ones and at right angles to them, the whole forming a series of connected arched axes, truncate at their ends, which were formerly continued into leafy culms. The rhizome is always solid, and has the usual internal structure of the monocotyledonous stem. In the cases of branching just cited the branches break directly through the sheath of the leaf in connexion with which they arise. In other cases the branches grow upwards through the sheaths which they ultimately split from above, and emerging as aerial shoots give a tufted habit to the plant. Good examples are the oat, cock's-foot (Dactylis) and other British grasses. This mode of growth is the cause of the " tillering " of cereals, or the production of a large number of erect growing branches from the lower nodes of the young stem. Isolated tufts or tussocks are also characteristic of steppe - and savanna - vegetation and open places generally in the warmer parts of the earth.
The aerial leaf-bearing branches (culms) are a characteristic feature of grasses. They are generally numerous, erect, cylindrical (rarely flattened) and conspicuously jointed with evident nodes. The nodes are solid, a strong plate of tissue passing across the stem, but the internodes are commonly hollow, although examples of completely solid stems are not uncommon (e.g. maize, many Andropogons, sugar-cane). The swollen nodes are a characteristic feature. In wheat, barley and most of the British native grasses they are a development, not of the culm, but of the base of the leaf-sheath. The function of the nodes is to raise again culms which have become bent down; they are composed of highly turgescent tissue, the cells of which elongate on the side next the earth when the culm is placed in a horizontal or oblique position, and thus raise the culm again to an erect position. The internodes continue to grow in length, especially the upper ones, for some time; the increase takes place in a zone at the extreme base, just above the node. The exterior of the culms is more or less concealed by the leaf-sheaths; it is usually smooth and often highly polished, the epidermal cells containing an amount of silica sufficient to leave after burning a distinct skeleton of their structure. Tabasheer is a white substance mainly composed of silica, found in the joints of several bamboos. A few of the lower internodes may become enlarged and subglobular, forming nutriment-stores, and grasses so characterized are termed " bulbous " (Arrhenatherum, Poa bulbosa, &c.). In internal structure grass-culms, save in being hollow, conform to that usual in monocotyledons; the vascular bundles run parallel in the internodes, but a horizontal interlacement occurs at the nodes. In grasses of temperate climates branching is rare at the upper nodes of the culm, but it is characteristic of the bamboos and many tropical grasses. The branches are strictly distichous. In many bamboos they are long and spreading or drooping and copiously ramified, in others they are reduced to hooked spines. One genus (Dinochloa, a native of the Malay archipelago) is scandent, and climbs over trees roo ft. or more in height, Olyra latifolia, a widely-spread tropical species, is also a climber on a humbler scale.
Grass-culms grow with great rapidity, as is most strikingly seen in bamboos, where a height of over ioo ft. is attained in from two to three months, and many species grow two, three or even more feet in twenty-four hours. Silicic hardening does not begin till the full height is nearly attained. The largest bamboo recorded is 170 ft., and the diameter is usually reckoned at about 4 in. to each 50 ft.
Leaves
These present special characters usually sufficient for ordinal determination. They are solitary at each node and arranged in two rows, the lower often crowded, forming a basal tuft. They consist of two distinct portions, the sheath and the blade. The sheath is often of great length, and generally completely surrounds the culm, forming a firm protection for the internode, the younger basal portion of which, including the zone of growth, remains tender for some time. As a rule it is split down its whole length, thus differing from that of Cyperaceae which is almost invariably (Eriospora is an exception) a complete tube; in some grasses, however (species of Poa, Bromus and others), the edges are united. The sheaths are much dilated in Alopecurus vaginatus and in a species of Potamochloa, in the latter, an East Indian aquatic grass, serving as floats. At the summit of l i the sheath, above the origin of the blade, is the ligule, a usually membranous process of small size (occasionally reaching r in. in length) erect and pressed around the culm. It is rarely quite absent, but may be represented by a tuft of hairs (very conspicuous in Pariana). It serves to prevent rain-water, which has run down the blade, from entering the sheath. Melica uniflora has in addition to the ligule, a green erect tongue-like process, from the line of junction of the edges of the sheath.
The blade is frequently wanting or small and imperfect in the basal leaves, but in the rest is long and set on to the sheath at an angle. The usual form is familiar - sessile, more or less ribbon-shaped, tapering to a point, and entire at the edge. The chief modifications are the articulation of the deciduous blade on to the sheath, which occurs in all the Bambuseae (except Planotia) and in Spartina stricta; and the interposition of a petiole between the sheath and the blade, as in bamboos, Leptaspis, Pharus, Pariana, Lophatherum and others. In the latter case the leaf usually becomes oval, ovate or even cordate or sagittate, but these forms are found in sessile leaves also (Olyra, Panicum). The venation is strictly parallel, the midrib usually strong, and the other ribs more slender. In Anomochloa there are several nearly equal ribs and in some broad-leaved grasses (Bambuseae, Pharus, Leptaspis) the venation becomes tesselated by transverse connecting veins. The tissue is often raised above the veins, form - - ? ' ing longitudinal ridges, generally on the upper face; the stomata are in lines in the intervening furrows. The thick prominent veins in Agropyrum occupy the whole upper surface of the leaf. Epidermal appendages are rare, the most frequent being marginal, saw-like, cartilaginous teeth, usually minute, but occasionally (Danthonia scabra, Panicum serratum) so large as to give the margin a serrate appearance. The leaves are occasionally woolly, as in Alopecurus lanatus and one or two Panicums. The blade is often twisted, frequently so much so that the upper and under faces become reversed. In dry-country grasses the blades are often folded on the midrib, or rolled up. The rolling is effected by bands of large wedge-shaped cells - motor-cells - between the nerves, the loss of turgescence by which, as the air dries, causes the blade to curl towards the face on which they occur. The rolling up acts as a protection from too great loss of water, the exposed surface being specially protected to this end by a strong cuticle, the majority or all of the stomata occurring on the protected surface. The stiffness of the blade, which becomes very marked in dry-country grasses, is due to the development of girders of thick-walled mechanical tissue which follow the course of all or the principal veins (fig. 2). Inflorescence. - This possesses an exceptional importance in grasses, since, their floral envelopes being much reduced and the sexual organs of very great uniformity, the characters employed for classification are mainly derived from the arrangement of the flowers and their investing bracts. Various interpretations have been given to these glumaceous organs and different terms employed for them by various writers. It may, however, be FIG. 3. - One-flowered FIG. 4. - Two-flowered spikelet spikelet of Agrostis. of Aira. b, Barren glumes; f, flowering glumes. (Both enlarged.) considered. as settled that the whole of the bodies known as glumes and paleae, and distichously arranged externally to the flower, form no part of the floral envelopes, but are of the nature of bracts. These are arranged so as to form spikelets (locustae), and each spikelet may contain one, as in Agrostis (fig. 3) two, as in Aira (fig. 4) three, or a great number of flowers, as in Briza (fig. 5) Triticum (fig. 6); in some species of Eragrostis there are nearly 60. The flowers are, as a rule, placed laterally on the axis(rachilla)of the spikelet, but in one-flowered spikelets they appear to be terminal, and are probably really so in Anthoxanthum (fig. 7) and in two anomalous genera,, Anomochloa and Streptochaeta. In immediate relation with the flower itself, and often entirely concealing it, is the palea or pale (" upper pale " of most systematic agrostologists). This organ (fig. 13, i) is peculiar to grasses FIG. 5. - Spikelet of Briza. FIG. 6. - Spikelet of Triticum. (Both enlarged.) among Glumiflorae (the series to which belong the two families Gramineae and Cyperaceae), and is almost always present, certain Oryzeae and Phalarideae being the only exceptions. It is of thin membranous consistence, usually obtuse, often bifid, and possesses no central rib or nerve, but has two lateral ones, one on either side; the margins are frequently folded in at the ribs, which thus become placed at the sharp angles. This structure was formerly regarded as pointing to the fusion of two organs, and the pale was considered by Robert Brown to represent two portions soldered together of a trimerous perianth - whorl, the third portion being the " lower pale." The pale is now generally considered to represent the single bracteole, characteristic of Monocotyledons, the binerved structure being the result of the pressure of the axis of the spikelet during the development of the pale, as in Iris and others. The flower with its pale is sessile, and is placed in the axil of another bract in such a way that the pale is exactly opposed to it, though at a slightly higher level. It is this second bract or flowering glume which has been generally called by systematists the " lower pale," and with the " upper pale " was formerly considered to form an outer floral envelope (" calyx," Jussieu; " perianthium," Brown). The two bracts are, however, on different axes, one secondary to the other, and cannot therefore be parts of one whorl of organs. They are usually quite unlike one another, but in some genera (e.g. most Festuceae) are very similar in shape and appearance.