the Week of Proper 26 / Ordinary 31
Click here to join the effort!
Bible Encyclopedias
Ballistics
1911 Encyclopedia Britannica
(from the Gr. 136XAEcv, to throw), the science of throwing warlike missiles or projectiles. It is now divided into two parts: - Exterior Ballistics, in which the motion of the projectile is considered after it has received its initial impulse, when the projectile is moving freely under the influence of gravity and the resistance of the air, and it is required to determine the circumstances so as to hit a certain object, with a view to its destruction or perforation; and Interior Ballistics, in which the pressure of the powder-gas is analysed in the bore of the gun, and the investigation is carried out of the requisite charge of powder to secure the initial velocity of the projectile, without straining the gun unduly. The calculation of the stress in the various parts of the gun due to the powder pressure is dealt with in the article Ordnance.
I. Exterior Ballistics.
In the ancient theory due to Galileo, the resistance of the air is ignored, and, as shown in the article on Mechanics (§ 13), the trajectory is now a parabola. But this theory is very far from being of practical value for most purposes of gunnery; so that a first requirement is an accurate experimental knowledge of the resistance of the air to the projectiles employed, at all velocities useful in artillery. The theoretical assumptions of Newton and Euler (hypotheses magis mathematicae quam naturales) of a resistance varying as some simple power of the velocity, for instance, as the square or cube of the velocity (the quadratic or cubic law), lead to results of great analytical complexity, and are useful only for provisional extrapolation at high or low velocity, pending further experiment.
The foundation of our knowledge of the resistance of the air, as employed in the construction of ballistic tables, is the series of experiments carried out between 1864 and 1880 by the Rev. F. Bashforth, B.D. (Report on the Experiments made with the Bashforth Chronograph, &c., 1865-1870; Final Report, &c., 1878-1880; The Bashforth Chronograph, Cambridge, 1890). According to these experiments, the resistance of the air can be represented by no simple algebraical law over a large range of velocity. Abandoning therefore all a priori theoretical assumption, Bashforth set to work to measure experimentally the velocity of shot and the resistance of the air by means of equidistant electric screens furnished with vertical threads or wire, and by a chronograph which measured the instants of time at which the screens were cut by a shot flying nearly horizontally. Formulae of the calculus of finite differences enable us from the chronograph records to infer the velocity and retardation of the shot, and thence the resistance of the air.
As a first result of experiment it was found that the resistance of similar shot was proportional, at the same velocity, to the surface or cross section, or square of the diameter. The resistance R can thus be divided into two factors, one of which is d 2 , where d denotes the diameter of the shot in inches, and the other factor is denoted by p, where p is the resistance in pounds at the same velocity to a similar I-in. projectile; thus R=d 2 p, and the value of p, for velocity ranging from 1600 to 2150 ft. per second (f/s) is given in the second column of the extract from the abridged ballistic table below.
These values of p refer to a standard density of the air, of 534.22 grains per cubic foot, which is the density of dry air at sea-level in the latitude of Greenwich, at a temperature of 62° F. and a barometric height of 30 in.
But in consequence of the humidity of the climate of England it is better to suppose the air to be (on the average) two-thirds saturated with aqueous vapour, and then the standard temperature will be reduced to 60° F., so as to secure the same standard density; the density of the air being reduced perceptibly by the presence of the aqueous vapour.
It is further assumed, as the result of experiment, that the resistance is proportional to the density of the air; so that if the standard density changes from unity to any other relative density denoted by then R= Td 2 p, and is called the coefficient of tenuity. The factor T becomes of importance in long range high angle fire, where the shot reaches the higher attenuated strata of the atmosphere; on the other hand, we must take about 800 in a calculation of shooting under water.
The resistance of the air is reduced considerably in modern projectiles by giving them a greater length and a sharper point, and by the omission of projecting studs, a factor called the coefficient of shape, being introduced to allow for this change.
For a projectile in which the ogival head is struck with a radius of 2 diameters, Bashforth puts K= o975; on the other hand, for a flat-headed projectile, as required at proof-butts, = 1 . say 2 on the average.
For spherical shot is not constant, and a separate ballistic table must be constructed; but may be taken as 1.7 on the average.
Lastly, to allow for the superior centering of the shot obtainable with the breech-loading system, Bashforth introduces a factor a, called the coefficient of steadiness. This steadiness may vary during the flight of the projectile, as the shot may be unsteady for some distance after leaving the muzzle, afterwards steadying down, like a spinning-top. Again, a may increase as the gun wears out, after firing a number of rounds.
Collecting all the coefficients, into one, we put (I) R = nd 2 p = nd 2 f (v) , where and n is called the coefficient of reduction. By means of a well-chosen value of n, determined by a few experiments, it is possible, pending further experiment, with the most recent design, to utilize Bashforth's experimental results carried out with old-fashioned projectiles fired from muzzle-loading guns. For instance, n=o8 or even less is considered a good average for the modern rifle bullet.
Starting with the experimental values of p, for a standard projectile, fired under standard conditions in air of standard density, we proceed to the construction of the ballistic table. We first determine the time t in seconds required for the velocity of a shot, d inches in diameter and weighing w lb, to fall from any initial velocity V(f/s) to any final velocity v(f/s). The shot is supposed to move horizontally, and the curving effect of gravity is ignored.
If At seconds is the time during which the resistance of the air, R it), causes the velocity of the shot to fall Av(f/s), so that the velocity drops from v+2Av to v-2Av in passing through the mean velocity v, then (3) Rot = loss of momentum in second-pounds, =w(v-+ZAv)/g - w(v - 2 Av)/g = wAv/g so that with the value of R in (I), (4) At =wAv/nd2pg.
We put and call C the ballistic coefficient (driving power) of the shot, so that (6) At = COT, where (7) AT = Av/gp, and AT is the time in seconds for the velocity to drop Av of the standard shot for which C = I, and for which the ballistic table is calculated.
Since p is determined experimentally and tabulated as a function of v, the velocity is taken as the argument of the ballistic table; and taking Av =10, the average value of p in the interval is used to determine AT.
Denoting the value of T at any velocity v by T (v), then (8) T(v) = sum of all the preceding values of AT plus an arbitrary constant, expressed by the notation (9) T(v) =Z(Av)/gp+ a constant, or fdv/gp+ a constant, in which p is supposed known as a function of v. The constant may be any arbitrary number, as in using the table the difference only is required of two tabular values for an initial velocity V and final velocity v; and thus (to) T(V) - T(v) = Ev Ov/gp or fvdv/gp; and for a shot whose ballistic coefficient is C (II) t=C[T(V) - T(v)]. To save the trouble of proportional parts the value of T(v) for unit increment of v is interpolated in a full-length extended ballistic table for T.
Next, if the shot advances a distance As ft. in the time At, during which the velocity falls from v+2Av to v-2Av, we have (12) RAs = loss of kinetic energy in foot-pounds =w(v+ZOv) 2 /g - w(v - ZOv) 2 /g=wvAv/g, so that (13) As =wvAv/nd 2 pg =CAS, where (14) AS = vAv/g p = vAT, and AS is the advance in feet of a shot for which C =1, while the velocity falls Av in passing through the average velocity v. Denoting by S(v) the sum of all the values of AS up to any assigned velocity v, (is) S(v) =E(OS)+ a constant, by which S(v) is calculated from AS, and then between two assigned velocities V and v, V AT, = vAv or rvvdv vgp gp' and if s feet is the advance of a shot whose ballistic coefficient is C, (17) s=C[S(V) - S(v)].
In an extended table of S, the value is interpolated for unit increment of velocity.
A third table, due to Sir W.D. Niven, F.R.S., called the degree table, determines the change of direction of motion of the shot while the velocity changes from V to v, to shot flying nearly horizontally, To explain the theory of this table, suppose the tangent at the point of the trajectory, where the velocity is v, to make an angle i radians with the horizon.
Resolving normally in the trajectory, and supposing the resistance of the air to act tangentially, (18) v(di/dt) =g cos i, where di denotes the infinitesimal decrement of i in the infinitesimal increment of time dt. w /nd2 = C, (16) S(V) - S(v) = for cos i to be undistinguishable from unity, equation (16) becomes In a problem of direct fire, where the trajectory is flat enough (19) v(di/dt=g, or di/dt=g/v; so that we can put (20) Ai/ At.t = g/v, if v denotes the mean velocity during the small finite interval of time At, during which the direction of motion of the shot changes through Ai radians.
If the inclination or change of inclination in degrees is denoted by S or OS, (21) 5/180=i/7r, so that (22) AS 180 _ 180g (Ot and if 5 and i change to D and I for the standard projectile, AT Ov 180g AT (23) DI =g ., = v p, AD = -Tr, and vv or J VQ'V, D(V) -D(v) = 180 [I(V) - i (v)].
The differences OD and DI are thus calculated, while the values of D(v) and I (v) are obtained by summation with the arithmometer, and entered in their respective columns.
For some purposes it is preferable to retain the circular measure, i radians, as being undistinguishable from sin i and tan i when i is small as in direct fire.
The last function A, called the altitude function, will be explained when high angle fire is considered.
These functions, T, S, D, 1, A, are shown numerically in the following extract from an abridged ballistic table, in which the velocity is taken as the argument and proceeds by an increment of 10 f/s; the column for p is the one determined by experiment, and the remaining columns follow by calculation in the manner explained above. The initial values of T, S, D, I, A must be accepted as belonging to the anterior portion of the table.
In any region of velocity where it is possible to represent p with sufficient accuracy by an empirical formula composed of a single power of v, say v m , the integration can be effected which replaces the summation in (to), (16), and (24); and from an analysis of the Krupp experiments Colonel Zabudski found the most appropriate index m in a region of velocity as given in the following table, and the corresponding value of gp, denoted by f (v)or v m lk or its equivalent Cr, where r is the retardation.
1 (V) - 1 (v) = Abridged Ballistic Table.
The numbers have been changed from kilogramme-metre to poundfoot units by Colonel Ingalls, and employed by him in the calculation of an extended ballistic table, which can be compared with the result of the abridged table. The calculation can be carried out in each region of velocity from the formulae: (25) T(V) - T(v) =k f vvm dv, S(V)-S(v) =k f vvm+ldv I (V)-I(v)=gk v vv m-ldv, and the corresponding integration.
The following exercises will show the application of the ballistic table. A slide rule should be used for the arithmetical operations, as it works to the accuracy obtainable in practice.
Example I. - Determine the time t sec. and distance s ft. in which the velocity falls from 2150 to 1600 f/s (a) of a 6-in. shot weighing ioolb, taking n =0.96, (b) of a rifle bullet, o. 303-in. calibre, weighing half an ounce, taking n=o8.
Example 2. - Determine the remaining velocity v and time of flight t over a range of woo yds. of the same two shot, fired with the same muzzle velocity V = 2150 f/s.
The first equation leads, as before, to t=C{T (V)-T(v)}, (29) x=C{S(V)-S(v)}. The integration of (24) gives d (30) dt =constant -gt=g(2T-t), if T denotes the whole time of flight from 0 to the point B (fig. I), where the trajectory cuts the line of sight; so that IT is the time to the vertex A, where the shot is flying parallel to OB.
Integrating (27) again, (31) y =g(zTt2t 2) = zgt(T -t); and denoting T-t by t', and taking g= 32f/s2,) y =16tt', (32 which is Colonel Sladen's formula, employed in plotting ordinates. of a trajectory.
At the vertex A, where y =H, we have t = t' =1-T, so that (33) H = sgT2, which for practical purposes, taking g= 32, is replaced by (34) H = 4T 2, or (2T)2.
Thus, if the time of flight of a shell is 5 sec., the height of the vertex of the trajectory is about loo ft.; and if the fuse is set to burst the shell one-tenth of a second short of its impact at B, the height of the burst is 7.84, say 8 ft.
The line of sight Ox, considered horizontal in range table results, may be inclined slightly to the horizon, as in shooting up or down a moderate slope, without appreciable modification of (28) and (29), and y or PM is still drawn vertically to meet OB in M.
Given the ballistic coefficient C, the initial velocity V, and a range of R yds. or X=3R ft., the final velocity v is first calculated from (29) by (35) S(v) =S(V) -X/C, and then the time of flight T by (36) T = C {T(V) -T(v)}.
Denoting the angle of departure and descent, measured in degrees and from the line of sight OB by ¢ and 0, the total deviation in the range OB is (fig. I) 3= 0+0=C{D(V)-D(v)}.
To share the S between and 0, the vertex A is taken as the point of half-time (and therefore beyond half-range, because of the continual diminution of the velocity), and the velocity vo at A is calculated from the formula (38) T(vo) = T(V) - = z {T(V) -T (v)}; and now the degree table for D(v) gives (39) 4=C{D(V)-D(v0)}, =CID (vo) -D(v)}.
This value of is the tangent elevation (T.E); the quadrant elevation (Q.E.) is -S, where S is the angular depression of the line of sight and if 0 is h ft. vertical above B, the angle S at a range of R yds. is given by sin S=h/3R, (41) or, for a small angle, expressed in minutes, taking the radian as 3438', (42) S = 1146h/R.
So also the angle /3 must be increased by S to obtain the angle at which the shot strikes a horizontal plane - the water, for instance.
A systematic exercise is given here of the compilation. of a range table by calculation with the ballistic table; and it is to be compared with the published official range table which follows.
A discrepancy between a calculated and tabulated result will serve to show the influence of a slight change a in the coefficient of reduction n, and the muzzle velocity V.
Example 3. - Determine by calculation with the abridged ballistic table the remaining velocity v, the time of flight t, angle of elevation 0, and descent 13 of this 6-in. gun at ranges 500, woo, 1500, 2000 yds., taking the muzzle velocity V =2150 f/s, and a coefficient of reduction n=0.96. [For Table see p. 5941 An important problem is to determine the alteration of elevation for firing up and down a slope. It is found that the alteration of the tangent elevation is almost insensible, but the quadrant elevation requires the addition or subtraction of the angle of sight.
Example
Find the alteration of elevation required at a range of 3000 yds. in the exchange of fire between a ship and a fort 1200 ft. high, a 12-in. gun being employed on each side, firing a shot weighing 850 lb with velocity 2150 f/s. The complete ballistic table, and the method of high angle fire (see below) must be employed.
In the calculation of range tables for direct fire, defined officially as " fire from guns with full charge at elevation not exceeding 15°," the vertical component of the resistance of the FIG. I.
air may be ignored as insensible, and the actual velocity and its horizontal component, or component parallel to the line of sight, are undistinguishable.
The equations of motion are now, the co-ordinates x and y being measured in feet, 2 (26) - -rr- - C, dt2 dty - g' * These numbers are taken from a part omitted here of the abridged ballistic table.
Range Table For 6-Inch Gun .
The last column in the Range Table giving the inches of penetration into wrought iron is calculated from the remaining velocity by an empirical formula, as explained in the article Armour Plates.
High Angle and Curved Fire.-" High angle fire," as defined officially, " is fire at elevations greater than r 5°," and " curved fire is fire from howitzers at all angles of elevation not exceeding 15°." In these cases the curvature of the trajectory becomes considerable, and the formulae employed in direct fire must be modified; the method generally employed is due to Colonel Siacci of the Italian artillery.
Starting with the exact equations of motion in a resisting medium, (43) d2t cos i = ds, d 2 y d 44 dt2 = -r sin i-g= -rds-g, and eliminating r, (45) dt - - cos z, or the equation obtained, as in (18), by resolving normally in the trajectory, but di now denoting the increment of i in the increment of time dt. so that Denoting dx/dt, the horizontal component of the velocity, by q, (49) v cos i =q, equation (43) becomes (50) dq/dt= -r cos i, and therefore by !(48) (51) dq _dq dt ry di - dt di-g' It is convenient to express r as a function of v in the previous notation (52) Cr = f(v), dq _vf(v) di - Cg ' an equation connecting q and i. Now, since v sec i (54) di sec i dq C f(q sec i)' and multiplying by /dt or q, (55) dx C q sec i dq - f (q sec i)' and multiplying by dy/dx or tan i, (56) dy C q sec i tan dq - f (q sec i) ' also (57) di Cg dq g sec i .f (g sec i)' (58) d tan i C g sec i dq - q. f (q sec i)' from which the values of t, x, y, i, and tan i are given by integration with respect to q, when sec i is given as a function of q by means of (51). Now these integrations are quite intractable, even for a very simple mathematical assumption of the function f(v), say the quadratic or cubic law, f(v) = v 2 /k or v3/k.
But, as originally pointed out by Euler, the difficulty can be turned if we notice that in the ordinary trajectory of practice the quantities i, cos i, and sec i vary so slowly that they may be replaced by their mean values,, t, cos 7 7, and sec r t, especially if the trajectory, when considerable, is divided up in the calculation into arcs of small curvature, the curvature of an arc being defined as the angle between the tangents or normals at the ends of the arc.
Replacing then the angle i on the right-hand side of equations (54) - (56) by some mean value, t, we introduce Siacci's pseudovelocity u defined by (59) u = q sec ,t, so that u is a quasi-component parallel to the mean direction of the tangent, say the direction of the chord of the arc.
di g d tan i g dt - v cos i ' and now (53) dx d 2 y dy d2xdx Cif dt 2 dt dt2 _ - _ gdt' and this, in conjunction with (46) dy _ d y tan i = dx dt/dt' (47)di d 2 d d 2 x dx sec 2 idt = (ctt d t - at dt2) I (dt), reduces to (48) Integrating from any initial pseudo-velocity U, (60) du t _ C U uf(u) x= C cos n f u (u) y=C sin n ff (a); and supposing the inclination i to change from 0, to 8 radians over the arc.
(63) 0-0 =Cg cos n f u Au), 6 (4) tan 4 - tan g =Cg sec ?if u f(u)' But according to the definition of the functions T, S, I and D of the ballistic table, employed for direct fire, with u written for v, (65) ('u du _ du T(U) - T(u), J uf(??) - f g (66) ru du J f(u) (67) g du f uf(u) and therefore (68) t=C [T(U) - T(u)], (69) x = C cos n [S(U) - S(u)1, (70) y =C sin n [S(U) - S(u)], 0-8= C cos n [I (U) - I (u)], (72) tan 0. - tan B=C sec n [I(U) - I (u)], while, expressed in degrees, (73) 0°-8° =C cos n [D(U) - D(u)]. The equations (66) - (71) are Siacci's, slightly modified by General Mayevski; and now in the numerical applications to high angle fire we can still employ the ballistic table for direct fire.
It will be noticed that n cannot be exactly the same in all these equations; but if n is the same in (69) and (74) y/x = tan n, so that n is the inclination of the chord of the arc of the trajectory, as in Niven's method of calculating trajectories (Proc. R. S., 18 77): but this method requires n to be known with accuracy, as I % variation in n causes more than 1% variation in tan n. The difficulty is avoided by the use of Siacci's altitude-function A or A(u), by which y/x can be calculated without introducing sin n or tan n, but in which n occurs only in the form cos n or sec n, which varies very slowly for moderate values of n, so that n need not be calculated with any great regard for accuracy, the arithmetic mean 1(0+0) of ¢ and B being near enough for n over any arc 4)-8 of moderate extent.
Now taking equation (72), and replacing tan B, as a variable final tangent of an angle, by tan i or dyldx, (75) tan 4) - dam= C sec n [I(U) - I(u)], and integrating with respect to x over the arc considered, (76) x tan 4, - y = C sec n (U) - f :I(u)dx] 0 But f (u)dx= f 1(u) du = C cos n f x I (u) u du g f() =C cos n [A(U) - A(u)] in Siacci's notation; so that the altitude-function A must be calculated by summation from the finite difference AA, where (78) AA = I (u) 9 = I (u) or else by an integration when it is legitimate to assume that f(v) =v m lk in an interval of velocity in which m may be supposed constant.
Dividing again by x, as given in (76), tan0. - y=Cs ecn[I(U) A(U) - A(u)l S(U) - S(u) J from which y/x can be calculated, and thence y. In the application of Siacci's method to the calculation of a trajectory in high angle fire by successive arcs of small curvature, starting at the beginning of an arc at an angle 4) with velocity v4), the curvature of the arc 4-8 is first settled upon, and now (80) n=1(0+0) is a good first approximation for n. Now calculate the pseudo-velocity uo from =v 95 cos 4) sec n, and then, from the given values of 0 and 8, calculate u e from either of the formulae of (72) or (73): (82) I (u 9) - I (u0) tan 0 - tan 8 C sec n (83) D(ue) =D (uq5) 4)°-B° cos n' Then with the suffix notation to denote the beginning and end of the arc 0-0, mt e = C[Tum) - T (u0)], 5 ((x x9 1l 0. - C = C cos n [ 5 (u 5) - S(ue)], ' y / e 0 A =tan - C sec n [I (u 0) - S] A now denoting any finite tabular difference of the function between the initial and final (pseudo-) velocity.
Q3 FIG. 2.
Also the velocity v at the end of the arc is given by (87) ve = u e sec 0 cos n.
Treating this final velocity v e and angle 0 as the initial velocity vo and angle 4) of the next arc, the calculation proceeds as before (fig.
In the long range high angle fire the shot ascends to such a height that the correction for the tenuity of the air becomes important, and the curvature 4)-8 of an arc should be so chosen that 4)y 0, the height ascended, should be limited to about moo ft., equivalent to a fall of I inch in the barometer or 3% diminution in the tenuity factor T. A convenient rule has been given by Captain James M. Ingalls, U.S.A., for approximating to a high angle trajectory in a single arc, which assumes that the mean density of the air may be taken as the density at two-thirds of the estimated height of the vertex; the rule is founded on the fact that in an unresisted parabolic trajectory the average height of the shot is two-thirds the height of the vertex, as illustrated in a jet of water, or in a stream of bullets from a Maxim gun.
The longest recorded range is that given in 1888 by the 9.2-in. gun to a shot weighing 380 lb fired with velocity 2375 f/s at elevation 40°; the range was about 12 m., with a time for flight of about 64 sec., shown in fig. 2.
A calculation of this trajectory is given by Lieutenant A. H. Wolley-Dod, R.A., in the Proceedings R.A. Institution, 1888, employing Siacci's method and about twenty arcs; and Captain Ingalls, by assuming a mean tenuity-factor T=0.68, corresponding to a height of about 2 m., on the estimate that the shot would reach a height of 3 m., was able to obtain a very accurate result, working in two arcs over the whole trajectory, up to the vertex and down again (Ingalls, Handbook of Ballistic Problems). Siacci's altitude-function is useful in direct fire, for giving immediately the angle of elevation 4, required for a given range of R yds. or X ft., between limits V and v of the velocity, and also the angle of descent 0.
In direct fire the pseudo-velocities U and u, and the real velocities V and v, are undistinguishable, and sec n may be replaced by unity so that, putting y =o in (79), (88) tan 4) = C [I (V) - y-s] Also (89) tan 4 - tan S=C [I(V) - L(v)] so that (9 °) tan 1 3=C [ 1 -s. - 1 or, as (88) and (90) may be written for small angles, (91) sin 20.=2C [I (V) - oS j, (92) sin 20 =2C [O S - I (v)] To simplify the work, so as to look out the value of sin 20 without the intermediate calculation of the remaining velocity v, a doubleentry table has been devised by Captain Braccialini Scipione =S (U) - S (u), = I (U) - I (u); mean angle (70), (Problemi del Tiro, Roma, 1883), and adapted to yd., ft., in. and lb units by A. G. Hadcock, late R.A., and published in the Proc. R.A. Institution, 1898, and in Gunnery Tables, 1898.
In this table (93) sin 20=Ca, where a is a function tabulated for the two arguments, V the initial velocity, and R/C the reduced range in yards.
The table is too long for insertion here. The results for and 0, as calculated for the range tables above, are also given there for comparison.
Drift
An elongated shot fired from a rifled gun does not move in a vertical plane, but as if the mean plane of the trajectory was inclined to the true vertical at a small angle, 2° or 3°; so that the shot will hit the mark aimed at if the back sight is tilted to the vertical at this angle 3, called the permanent angle of deflection (see Sights) .
This effect is called drift and the reason of it is not yet understood very clearly.
It is evidently a gyroscopic effect, being reversed in direction by a change from a right to a left-handed twist of rifling, and being increased by an increase of rotation of the shot.
The axis of an elongated shot would move parallel to itself only if fired in a vacuum; but in air the couple due to a sidelong motion tends to place the axis at right angles to the tangent of the trajectory, and acting on a rotating body causes the axis to precess about the tangent. At the same time the frictional drag damps the nutation and causes the axis of the shot to follow the tangent of the trajectory very closely, the point of the shot being seen to be slightly above and to the right of the tangent, with a right-handed twist. The effect is as if there was a mean sidelong thrust w tan S on the shot from left to right in order to deflect the plane of the trajectory at angle 6 to the vertical. But no formula has yet been invented, derived on theoretical principles from the physical data, which will assign by calculation a definite magnitude to 3.
An effect similar to drift is observable at tennis, golf, base-ball and cricket; but this effect is explainable by the inequality of pressure due to a vortex of air carried along by the rotating ball, and the deviation is in the opposite direction of the drift observed in artillery practice, so artillerists are still awaiting theory and crucial experiment.
After all care has been taken in laying and pointing, in accordance with the rules of theory and practice, absolute certainty of hitting the same spot every time is unattainable, as causes of error exist which cannot be eliminated, such as variations in the air and in the muzzle-velocity, and also in the steadiness of the shot in flight.
To obtain an estimate of the accuracy of a gun, as much actual practice as is available must be utilized for the calculation in accordance with the laws of probability of the 50% zones shown in the range table (see Probability.) Ii. Interior Ballistics The investigation of the relations connecting the pressure, volume and temperature of the powder-gas inside the bore of the gun, of the work realized by the expansion of the powder, of the V FIG. 3.
dynamics of the movement of the shot up the bore, and of the stress set up in the material of the gun, constitutes the branch of interior ballistics.
A gun may be considered a simple thermo-dynamic machine or heat-engine which does its work in a single stroke, and does not act in a series of periodic cycles as an ordinary steam or gas-engine.
An indicator diagram can be drawn for a gun (fig. 3) as for a /-' 21: '.; Obserued Pressures. 20, ?--rm20 1 [[Tons .2 191 1" S]] *: 9.0.
¦¦?. a ¦ ¦mmomm¦¦?¦¦ Ra¦¦G ¦?= ¦¦ ¦ ¦ ¦¦ ...
¦¦?¦ '%¦¦??? Minn ' 0 ?? ¦ ?
¦¦¦ ¦¦ ?
/ ??O ¦ ¦? ... /?, ? ¦ ¦ _ / / %' ? ¦ ¦ ??