Lectionary Calendar
Saturday, December 21st, 2024
the Third Week of Advent
Attention!
For 10¢ a day you can enjoy StudyLight.org ads
free while helping to build churches and support pastors in Uganda.
Click here to learn more!

Bible Encyclopedias
Polygonal Numbers

1911 Encyclopedia Britannica

Search for…
or
A B C D E F G H I J K L M N O P Q R S T U V W Y Z
Prev Entry
Polygonaceae
Next Entry
Polyhedral Numbers
Resource Toolbox

In mathematics. Suppose we have a number of equal circular counters, then the number of counters which can be placed on a regular polygon so that the tangents to the outer rows form the regular polygon and all the internal counters are in contact with its neighbours, is a "polygonal number" of the order of the polygon. If the polygon be a triangle then it is readily seen that the numbers are 3, 6, 10, 1 5 ... and generally z n (n -{- r); if a square, 4, 9, 16, ... and generally n'; if a pentagon, 5, 12, 22 ... and generally n(3n--I); if a hexagon, 6, 1 5, 28, ... and generally n(2nI); and similarly for a polygon of r sides, the general expression for the corresponding polygonal number is 2n[(n-I) ( r- 2)+2].

Algebraically, polygonal numbers may be regarded as the sums of consecutive terms of. the arithmetical progressions having I for the first term and 1, 2, 3, ... for the common differences. Taking unit common difference we have the series I; I +2 =3; 1+2+3 = 6; I + 2 + 3 + 4 = to; or generally I + 2 + 3 ... + n = Zn(n+I); these are triangular numbers. With a common difference 2 we have I; 1 +3 = 4; 1 +3+5 = 9; I+3+5+7=16; or generally 1+3+5+ ... -i- (2n-I)=n 2; and generally for the polygonal number of the rth order we take the sums of consecutive terms of the series 1, I+(r-2), 1+2 (r-2), ... 1+n-I.r-2; and hence the nth polygonal number of the rth order is the sum of n terms of this series, i.e., I+I +(r2)+I +2(r-2)+. .. -}-(I Fn-I.r-2) =n+2n.n-1.r The series I, 2, 3, 4, ... or generally n, are the so-called "linear numbers" (Cf. Figurate Numbers).

Bibliography Information
Chisholm, Hugh, General Editor. Entry for 'Polygonal Numbers'. 1911 Encyclopedia Britanica. https://www.studylight.org/​encyclopedias/​eng/​bri/​p/polygonal-numbers.html. 1910.
 
adsfree-icon
Ads FreeProfile