Lectionary Calendar
Thursday, November 21st, 2024
the Week of Proper 28 / Ordinary 33
Attention!
Take your personal ministry to the Next Level by helping StudyLight build churches and supporting pastors in Uganda.
Click here to join the effort!

Bible Encyclopedias
Brazing and Soldering

1911 Encyclopedia Britannica

Search for…
or
A B C D E F G H I J K L M N O P Q R S T U V W Y Z
Prev Entry
Brazil, Indiana
Next Entry
Breach
Resource Toolbox

In metal work, termed respectively hard and soft soldering, are processes which correspond with soldering done at high and at low temperatures. The first embraces jointing effected with soldering mixtures into which copper, brass, or silver largely enter, the second those in which lead and tin are the only, or the principal, constituents. Some metals, as aluminium and cast iron, are less easily soldered than others. Aluminium, owing to its high conductivity, removes the heat from the solder rapidly. Aluminium enters into the composition of most of the solders for these metals, and the "soldering bit" is of pure nickel.

The hard solders are the spelter and the silver solders. Soft spelter solder is composed of equal parts of copper and zinc, melted and granulated and passed through a sieve. As some of the zinc volatilizes the ultimate proportions are not quite equal. The proportion of zinc is increased if the solder is required to be softer or more fusible. A valuable property of the zinc is that its volatilization indicates the fusing of the solder. Silver solder is used for jewelry and other fine metal work, and has the advantage of high fusing points. The hardest contains from 4 parts of silver to 1 of copper; the softest 2 of silver to 1 of brass wire. Borax is the flux used, with silver solder as with spelter.

The soft solders are composed mainly of tin and lead. They occur in a large range. Common tinner's solder is composed of equal parts of tin and lead, and melts at 370° Fah. Plumber's solder has 2 of lead to i of tin. Excess of lead in plumber's solder renders the solder difficult to work, excess of tin allows it to melt too easily. Pewterers add bismuth to render the solder more fusible, e.g. lead 4, tin 3, bismuth 2; or lead i, tin 2, bismuth 1. Unless these are cooled quickly the bismuth separates out.

The essentials of a soldered joint are the contact of absolutely clean surfaces, free from oxide and dirt. The surfaces are therefore scraped, filed and otherwise treated, and then, in order to cleanse and preserve them from any trace of oxide which might form during subsequent manipulation, a fluxing material is used. The soldering material is compelled to follow the areas prepared for it by the flux, and it will not adhere anywhere else. There is much similarity between soldering and welding in this respect. A weld joint must as a rule be fluxed, or metal will not adhere to metal. There is not, however, the absolute need for fluxing that there is in soldered joints, and many welds in good fibrous iron are made without a flux. But the explanation here is that the metal is brought to a temperature of semifusion, and the shapes of joints are generally such that particles of scale are squeezed out from between the joint in the act of closing the weld. But in brazing and soldering the parts to be united are generally nearly cold, and only the soldering material is fused, so that the conditions are less favourable to the removal of oxide than in welding processes.

Fluxes are either liquid or solid, but the latter are not efficient until they fuse and cover the surfaces to be united. Hydrochloric acid (spirits of salts) is the one used chiefly for sof t soldering. It is "killed" by the addition of a little zinc, the resulting chloride of zinc rendering its action quiet. Common fluxes are powdered resin, and tallow (used chiefly by plumbers for wiped joints). These, with others, are employed for soft solder joints, the temperature of which rarely exceeds about 600° Fah. The best flux for zinc is chloride of zinc. For brazed joints, spelter or powdered brass is employed, and the flux is usually borax. The borax will not cover the joint until it has been deprived of its water of crystallization, and this is effected by raising it to a full red heat, when it swells in bulk, "boils," and afterwards sinks quietly and spreads over, or into the joint. There are differences in details of working. The borax is generally powdered and mixed with the spelter, and both with water. But sometimes they are applied separately, the borax first and over this the particles of spelter. Another flux used for copper is sal ammoniac, either alone or mixed with powdered resin.

As brazed joints often have to be very strong, other precautions are frequently taken beyond that of the mere overlapping of the joint edges. In pipes subjected to high steam pressures, and articles subjected to severe stresses, the joints are "cramped" before the solder is applied. That is, the edges are notched in a manner having somewhat the appearance of the dovetails of the carpenter; the notched portions overlap the opposite edges, and on alternate sides. Such joints when brazed are stronger than plain overlapping joints would be. Steam dome coverings are jointed thus longitudinally as cylinders, and the crown is jointed thereto, also by cramping. Another common method of union is that of flanges to copper pipes. In these the pipe passes freely within a hole bored right through the flange, and the solder is run between. The pipe is suspended vertically, flange downwards, and the spelter run in from the back of the flange. The fused borax works its way in by capillary action, and the spelter follows.

The "copper bit" is used in soft soldering. Its end is a prismatic pyramid of copper, riveted to an iron shank in a wooden handle. It is made hot, and the contained heat is sufficient to melt the solder. It has to be "tinned," by being heated to a dull red, filed, rubbed with sal ammoniac, and then rubbed upon the solder. It is wiped with tow before use. For small brazed work the blow-pipe is commonly employed; large works are done on the brazier's hearth, or in any clear coke fire. If coal is used it must be kept away from the joint.

In "sweating on," a variation in soldering, the surfaces to be united are cleaned, and solder melted and spread over them. They are then brought together, and the temperature raised sufficiently to melt the solder.

A detail of first importance is the essential difference between the melting points of the objects to be brazed or soldered, and. that of the solder used. The latter must always be lower than the former. This explains why soldering materials are used in a large range of temperatures. A few will melt at the temperature of boiling water. At the other extreme 2000° Fah. is required to melt a solder for brazing. If this point is neglected, it will. often happen that the object to be soldered will fuse before the: solder melts. This accident may occur in the soft Britannia and white metals at the one extreme, and in the softer brasses at. the other. It would not do, for example, to use flanges of common brass, or even ordinary gun-metal, to be brazed to copper pipe, for they would begin to fuse before the joint was made. Such_ flanges must be made of nearly pure copper, to withstand the temperature, usually 98 of copper to 2 of tin (brazing metal). A most valuable feature in solder is that by varying the proportions of the metals used a great range in hardness and fusibility is obtainable. The useful solders therefore number many scores. This is also a source of danger, unless regard be had to the relative fusing points of solders, and of the parts. they unite. (J. G. H.) BRAllA, [[Pierre Paul Francois Camille Savorgnan De, Count]] (1852-1905), French explorer and administrator, founder of French Congo, was born on board ship in the harbour of Rio de Janeiro on the 26th of January 1852. He was of Italian parentage, the family name being de Brazza Savorgnani. Through the instrumentality of the astronomer Secchi he was sent to the Jesuit college in Paris, and in 1868 obtained authorization to enter as a foreigner the marine college at Brest. In the Franco-Prussian War of 1870-71 he took part in the operations of the French fleet. In 1874 when the warship on which he was serving was in the Gabun, Alfred Marche and the marquis. de Compiegne arrived at Libreville from an expedition in the lower Ogowe district. Interested in the reports of these travellers, de Brazza conceived the idea of exploring the Ogowe, which hethought might prove to be the lower course of the Lualaba, a. river then recently discovered by David Livingstone. Having: meantime been naturalized as a Frenchman, de Brazza in 1875 obtained permission to undertake his African scheme, and with the naval doctor, Noel Ballay, he explored the Ogowe river. Penetrating beyond the basin of that river, he discovered the Alima and Likona, but did not descend either stream. Thence turning northwards the travellers eventually regained the coast at the end of November 1878, having left Paris in August 1875. On arrival in Paris, de Brazza learned of the navigation of the Congo by H. M. Stanley, and recognized that the rivers. he had discovered were affluents of that stream.

De Brazza was anxious to obtain for France some part of the Congo. The French ministry, however, determined to utilize his energies in another quarter of Africa. Their attention had been drawn to the Niger through the formation of the United African Company by Sir George Goldie (then Mr Goldie Taubman) in July 1879, Goldie's object being to secure Nigeria for Great Britain. A new expedition was fitted out, and de Brazza left Paris at the end of 1879 with orders to go to the Niger, make treaties, and plant French flags. When on the point of sailing from Lisbon he received a telegram cancelling these instructions and altering his destination to the Congo. This was a decision of great moment. Had the Nigerian policy of France been maintained the International African Association (afterwards the Congo Free State) would have had a clear field on the Congo, while the young British Company would have been crushed out by French opposition; so that the two great basins of the Niger and the Congo would have had a vastly different history.

Acting on his new instructions, de Brazza, who was again accompanied by Ballay, reached the Gabun early in 1880. Rapidly ascending the Ogowe he founded the station of Francevine on the upper waters of that river and pushed on to the Congo at Stanley Pool, where Brazzaville was subsequently founded. With Makoko, chief of the Bateke tribe, de Brazza concluded treaties in September and October r880, placing the country under French protection. With these treaties in his possession Brazza proceeded down the Congo, and at Isangila on the 7th of November met Stanley, who was working his way up stream concluding treaties with the chiefs on behalf of the International African Association. De Brazza spent the next eighteen months exploring the hinterland of the Gabun, and returned to France in June 1882. The ratification by the French chambers in the following November of the treaties with Makoko (described by Stanley as worthless pieces of paper) committed France to the action of her agent.

Furnished with funds by the French government, de Brazza returned in 1883 to the Congo to open up the new colony, of which he was named commissioner-general in 1886. This post he held until January 1898, when he was recalled. During his period of office the work of exploration was systematically carried out by numerous expeditions which he organized. The incessant demands on the resources of the infant colony for these and other expeditions to the far interior greatly retarded its progress. De Brazza's administration was severely criticized; but that its comparative failure was largely due to inadequate support from the home authorities was recognized in the grant to him in 1902 of a pension by the chambers. Both as explorer and administrator his dealings with the natives were marked by consideration, kindness and patience, and he earned the title of "Father of the Slaves." His efforts to connect the upper Congo with the Atlantic by a railway through French territory showed that he understood the chief economic needs of the colony. After seven years of retirement in France de Brazza accepted, in February 1905, a mission to investigate charges of cruelty to natives brought against officials of the Congo colony. Having concluded his inquiry he sailed for France, but died at Dakar, Senegal, on the 4th of September 1905. His body was taken to Paris for burial, but in 1908 was reinterred at Algiers.

See D. Neuville et Ch. Breard, Les Voyages de Savorgnan de Brazza, Ogooue et Congo, 1875-1882 (Paris, 1884), and Conferences et lettres de P. Savorgnan de Brazza sur ses trois explorations dans l'ouest africain de 1875 a 1886 (Paris, 1887); A. J. Wauters, "Savorgnan de Brazza et la conquete du Congo francais," in Le Mouvement geographique, vol. xxii., No. 39 (Brussels, 1905). Giacomo or Jacques de Brazza (1859-1883), a younger brother of Savorgnan, and one of the men he employed in the work of exploration, published in collaboration with his companion A. Pecile, Tre Anni e mezzo nella regione del Congo e dell' Ogowe (Rome, 1887). (G. T. G.) BRAllA (Serbo-Croatian, Brac; Lat. Brattia ), an island in the Adriatic Sea, forming part of Dalmatia, Austria. Pop. (1900) 24,408. With an area of 170 sq. m. Brazza is the largest of the Dalmatian Islands; it is also the most thickly populated, and one of the most fertile. Its closely cultivated surface though ragged and mountainous yields an abundance of olives, figs, almonds and saffron, while its wines are of good quality. The corn-crop, however, barely suffices for three months' food. Other local industries are fishing and silkworm-rearing. The most important among twenty small villages on the island is Milna (pop. 2579), a steamship station, provided with shipwrights' wharves. The early history of Brazza is obscure. In the first years of the 13th century it was ruled by the piratical counts of Almissa; but after a successful revolt and a brief period of liberty it came under the dominion of Hungary. From 1413 to 1416 it was subject to Ragusa; and in 1420 it passed, with the greater part of Dalmatia, under Venetian sovereignty.

Bibliography Information
Chisholm, Hugh, General Editor. Entry for 'Brazing and Soldering'. 1911 Encyclopedia Britanica. https://www.studylight.org/​encyclopedias/​eng/​bri/​b/brazing-and-soldering.html. 1910.
 
adsfree-icon
Ads FreeProfile